Preferred Device

Switching Transistor

PNP Silicon

Features

• Pb-Free Packages are Available

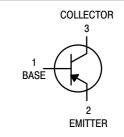
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	-40	Vdc
Collector – Base Voltage	V _{CBO}	-40	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous	۱ _C	-600	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) @T _A = 25°C Derate above 25°C	P _D	225 1.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) @T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


*Transient pulses must not cause the junction temperature to be exceeded. 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.

2. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

2T = Specific Device Code

M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location) *Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT4403LT1	SOT-23	3000 Tape & Reel
MMBT4403LT1G	SOT-23 (Pb-Free)	3000 Tape & Reel
MMBT4403LT3	SOT-23	10,000 Tape & Reel
MMBT4403LT3G	SOT-23 (Pb-Free)	10,000 Tape & Reel

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)

Characteristic			Min	Max	Unit
OFF CHARACTERISTICS			•		
Collector - Emitter Breakdown Voltage (Note 3)	$(I_{\rm C} = -1.0 \text{ mAdc}, I_{\rm B} = 0)$	V _{(BR)CEO}	-40	-	Vdc
Collector – Base Breakdown Voltage	$(I_{\rm C} = -0.1 \text{ mAdc}, I_{\rm E} = 0)$	V _{(BR)CBO}	-40	-	Vdc
Emitter-Base Breakdown Voltage	$(I_{E} = -0.1 \text{ mAdc}, I_{C} = 0)$	V _{(BR)EBO}	-5.0	-	Vdc
Base Cutoff Current	$(V_{CE} = -35 \text{ Vdc}, V_{EB} = -0.4 \text{ Vdc})$	I _{BEV}	-	-0.1	μAdc
Collector Cutoff Current	$(V_{CE} = -35 \text{ Vdc}, V_{EB} = -0.4 \text{ Vdc})$	I _{CEX}	-	-0.1	μAdc
ON CHARACTERISTICS					
DC Current Gain		hee			

DC Current Gain	(I _C = −0.1 mAdc, V _{CE} = −1.0 Vdc) (I _C = −1.0 mAdc, V _{CE} = −1.0 Vdc) (I _C = −10 mAdc, V _{CE} = −1.0 Vdc)	n _{FE}	30 60 100	- - -	-
(Note 3) (Note 3)	$(I_{C} = -150 \text{ mAdc}, V_{CE} = -2.0 \text{ Vdc})$ $(I_{C} = -500 \text{ mAdc}, V_{CE} = -2.0 \text{ Vdc})$		100 20	300 -	
Collector – Emitter Saturation Voltage (Note 3)	(I _C = –150 mAdc, I _B = –15 mAdc) (I _C = –500 mAdc, I _B = –50 mAdc)	V _{CE(sat)}		-0.4 -0.75	Vdc
Base – Emitter Saturation Voltage (Note 3)	(I _C = −150 mAdc, I _B = −15 mAdc) (I _C = −500 mAdc, I _B = −50 mAdc)	V _{BE(sat)}	-0.75 -	-0.95 -1.3	Vdc

SMALL-SIGNAL CHARACTERISTICS

Current-Gain - Bandwidth Product	(I _C = -20 mAdc, V _{CE} = -10 Vdc, f = 100 MHz)	fT	200	-	MHz
Collector-Base Capacitance	$(V_{CB} = -10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{cb}	-	8.5	pF
Emitter-Base Capacitance	$(V_{BE} = -0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz})$	C _{eb}	-	30	pF
Input Impedance	$(I_{C} = -1.0 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{ie}	1.5	15	kΩ
Voltage Feedback Ratio	$(I_{C} = -1.0 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{re}	0.1	8.0	X 10 ⁻⁴
Small-Signal Current Gain	$(I_{C} = -1.0 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{fe}	60	500	-
Output Admittance	$(I_{C} = -1.0 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{oe}	1.0	100	μMhos
SWITCHING CHARACTERISTICS					

SWITCHING CHARACTERISTICS

Delay Time	(V _{CC} = -30 Vdc, V _{EB} = -2.0 Vdc,	t _d	-	15	20
Rise Time	$I_{\rm C} = -150 \text{ mAdc}, I_{\rm B1} = -15 \text{ mAdc})$	t _r	-	20	ns
Storage Time	$(V_{CC} = -30 \text{ Vdc}, I_{C} = -150 \text{ mAdc},$	t _s	-	225	ns
Fall Time	$I_{B1} = I_{B2} = -15 \text{ mAdc}$	t _f	-	30	115

3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

SWITCHING TIME EQUIVALENT TEST CIRCUIT

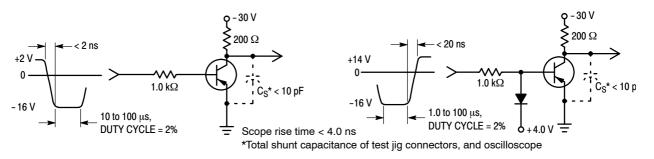
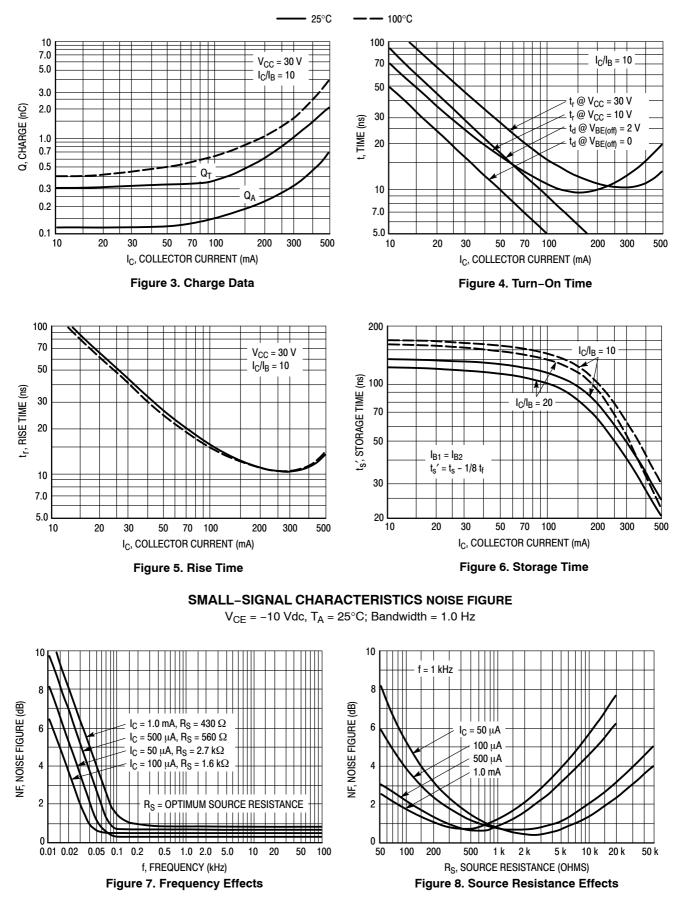
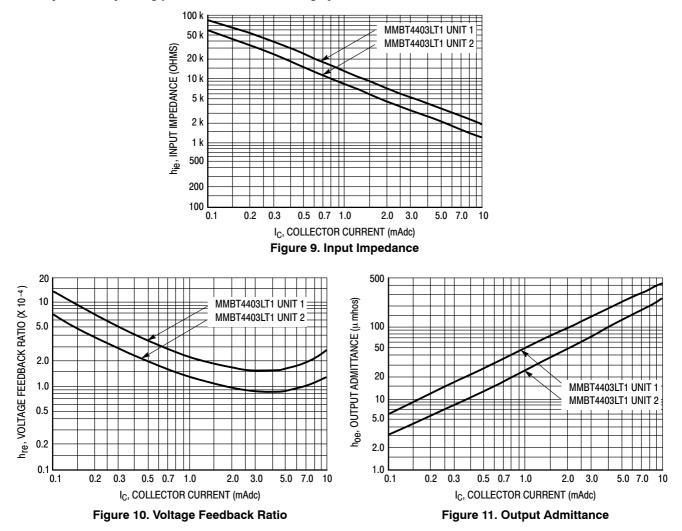
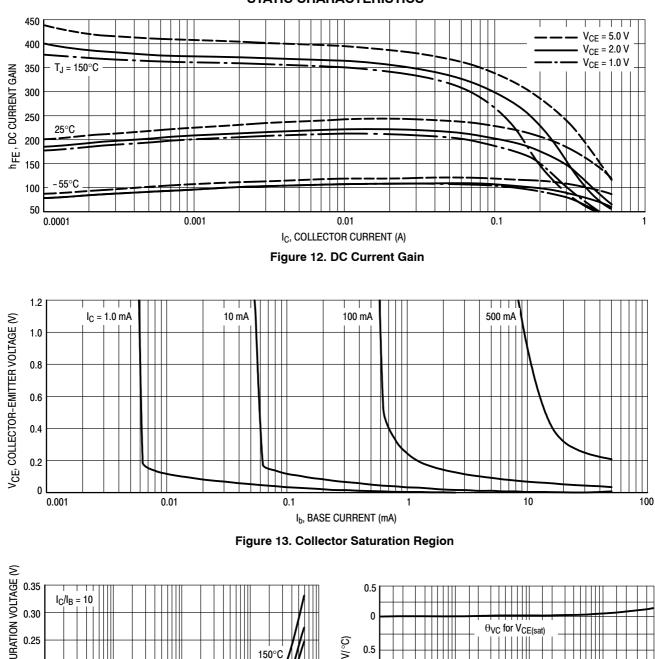
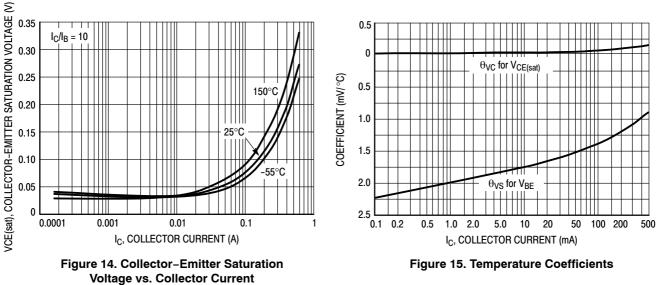



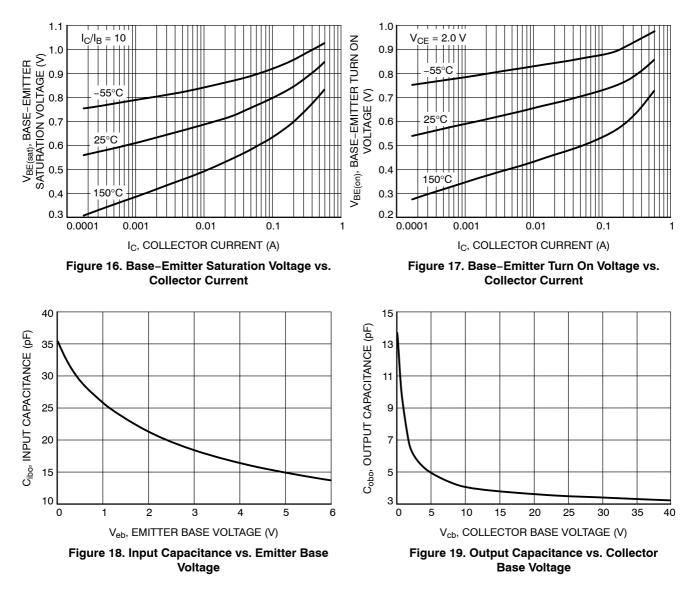
Figure 1. Turn-On Time

Figure 2. Turn-Off Time

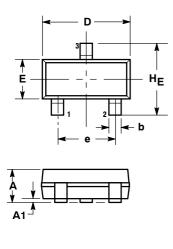

TRANSIENT CHARACTERISTICS

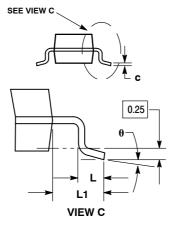

h PARAMETERS


V_{CE} = 10 Vdc, f = 1.0 kHz, T_A = 25°C


This group of graphs illustrates the relationship between h_{fe} and other "h" parameters for this series of transistors. To obtain these curves, a high–gain and a low–gain unit were selected from the MMBT4403LT1 lines, and the same units were used to develop the correspondingly numbered curves on each graph.

STATIC CHARACTERISTICS





PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AN**

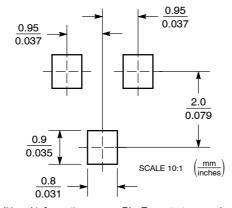
NOTES

DIMENSIONING AND TOLERANCING PER 1. ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD З.

THICKNESS IS THE MINIMUM THICKNESS OF

BASE MATERIAL. 4. 318–01 THRU –07 AND –09 OBSOLETE, NEW STANDARD 318–08.


	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.040	0.044
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.37	0.44	0.50	0.015	0.018	0.020
С	0.09	0.13	0.18	0.003	0.005	0.007
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.081
L	0.10	0.20	0.30	0.004	0.008	0.012
L1	0.35	0.54	0.69	0.014	0.021	0.029
HE	2.10	2.40	2.64	0.083	0.094	0.104

STYLE 6:

PIN 1. BASE 2. EMITTER

З. COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILC does not convey any license under its patent rights or the rights of others. SCILC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications. Buyer purchase or use SCILLC products for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative